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Abstract The resilience of salt marshes to sea level rise depends on vertical accretion through
belowground biomass production and sediment deposition to maintain elevation above sea level.
Increased nitrogen (N) availability from anthropogenic sources may stimulate aboveground biomass
production and sediment deposition and, thus, accretion; however, increased N may also negatively impact
marsh accretion by decreasing belowground biomass and increasing net CO2 emissions. A study was
conducted in Spartina alterniflora‐dominated salt marshes in North Carolina, USA, to determine how
responses to fertilization vary across locations with different physical and chemical characteristics. Pore
water residence time, inundation time, and proximity to tidal creeks drove spatial differences in pore water
sulfide, ammonium, and dissolved carbon concentrations. Although annual respiration and gross primary
production were greater at the creek edge than interior marsh sites, net ecosystem CO2 exchange (NEE)
was nearly balanced at all the sites. Fertilization decreased belowground biomass in the interior sites but not
on the creek edge. Aboveground biomass, respiration, gross primary production, and net CO2 emissions
increased in response to fertilization, but responses were diminished in interior marsh locations with high
pore water sulfide. Hourly NEE measured by chambers were similar to hourly NEE observed by a nearby
eddy covariance tower, but correcting for inundation depth relative to plant height was critical for accurate
extrapolation to annual fluxes. The impact of fertilization on biomass and NEE, and thus marsh resilience,
varied across marsh locations depending upon location‐specific pore water sulfide concentrations.

Plain Language Summary Salt marshes provide valuable services, such as protecting the coast
from storms, removing excess nutrient pollution from water, and long‐term burial of carbon. Because sea
level is currently rising, salt marshes need to build up elevation at the same rate as sea level rise to survive.
Human‐produced nitrogen pollution is rising in salt marshes, often increasing the growth of grass,
which may cause the marsh to trap sediment more efficiently and build elevation faster. However, increased
nitrogen may also decrease root growth and increase sediment microbial activity (which decomposes
sediment organic carbon to carbon dioxide), causing elevation‐building to slow down. It is unclear whether
the addition of nitrogen affects the marsh's elevation‐building rate in a positive or negative way. We
found that the effect of nitrogen on elevation‐building depends on location. Factors such as tidal inundation
and residence time influence sediment water chemistry and, thereby, the response to excess nitrogen.
Sulfide inhibits the uptake of nitrogen by plant roots and also microbial activity; thus, marsh locations with
more sulfide have diminished responses to nitrogen pollution. This knowledge may be used for
management of marshes at risk due to nitrogen pollution.

1. Introduction

Salt marshes rely on vertical organic carbon (OC) and mineral accretion to maintain elevation above rising
sea level. If salt marsh platforms do not build elevation faster than the local rate of relative sea level rise,
these ecosystems may convert to mudflat or open water. Marsh elevation may be gained either through
uptake of CO2, producing biomass that results in vertical belowground expansion, or through deposition
of sediment suspended in tidal water that results in vertical surface accretion (Friedrichs & Perry, 2001).
The uptake of CO2 via gross primary production (GPP) is counterbalanced by the release of CO2 through
plant and microbial respiration (R). Net ecosystem exchange (NEE), the balance between GPP and R, deter-
mines net gain or loss of OC in the marsh due to metabolism. In addition, aboveground biomass (AGB) of
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dominant macrophytes such as Spartina alterniflora, reduces the velocity of tidal water, causing deposition
of particulates and allowing marshes to efficiently trap suspended sediments. A strong positive correlation
between AGB and sediment deposition has been well established in locations with ample suspended sedi-
ment availability (Mudd et al., 2009).

Nitrogen (N) availability in salt marsh ecosystems has been increasing due to anthropogenic inputs in
coastal waters (Hopkinson et al., 2012; Pardo et al., 2011), impacting salt marsh accretion mechanisms
in both positive and negative ways. Because salt marsh macrophytes are often N‐limited (Valiela, 2015),
N fertilization may cause an increase in AGB and subsequently an increase in sediment trapping and
accretion. However, fertilization may also cause belowground biomass (BGB) and root: shoot ratios to
decrease (Darby & Turner, 2008), reducing belowground expansion and causing destabilization that
may lead to decreased stability of the marsh platform and collapse of creek banks (Deegan et
al., 2012). Furthermore, fertilization has been observed to increase CO2 efflux from sediment and degra-
dation of organic matter by microbial respiration (Wigand et al., 2009), which may negatively impact
marsh elevation.

Although numerous fertilization studies have been performed to determine the effect of increasing N on
salt marsh resilience, conflicting results suggest that the response to fertilization may vary with site‐speci-
fic characteristics (Davis et al., 2017). Most fertilization studies have observed an increase in AGB in
response to fertilization (Anisfeld & Hill, 2012; Darby & Turner, 2008; McFarlin et al., 2008;
Mendelssohn, 1979; Morris et al., 2013; Valiela, 2015); however, the response of sediment deposition var-
ied between increasing deposition or no response (Davis et al., 2017; Morris et al., 2013). BGB has been
observed to either increase (Morris et al., 2013; Wigand et al., 2015) or decrease (Darby & Turner, 2008;
Deegan et al., 2012) in response to fertilization. Several studies found that R and GPP (Wigand et al.,
2009; Anisfeld & Hill, 2012; Caplan et al., 2015; Geoghegan et al., 2018; Morris & Bradley, 1999; Wang,
Zhu et al., 2013, Bulseco et al., 2019) increased in response to fertilization, but the results for NEE were
mixed with either no detectable response (Geoghegan et al., 2018) or an increase in net CO2 emissions
(Caplan et al., 2015; Wang, Zhu, et al., 2013).

While these conflicting results could arise from variations in the type, amount, frequency, and technique of
N fertilization (Johnson et al., 2016), they may also arise from heterogeneity in the physical and chemical
characteristics of the locations where experiments were performed. Elevation, which largely determines
the frequency and duration of marsh tidal inundation, varies across and within salt marsh locations.
Because tidal water acts as a barrier to diffusion of atmospheric oxygen into marsh sediment, inundation
time may have an especially strong influence on chemical characteristics of marsh pore water. Marshes with
long inundation times tend to have more reduced conditions and greater sulfide (H2S) content (Howes &
Goehringer, 1994). The residence time of pore water, which varies depending on sediment composition,
slope, elevation, tidal amplitude, and groundwater hydrology (Tamborski et al., 2017), governs the concen-
trations of metabolic products accumulating in pore water. Creekbanks, distinct subhabitats within marsh
ecosystems, often have a high elevation berm resulting from high rates of sediment deposition (Temmerman
et al., 2003). Exposure to highly energic oxic creek water often rapidly flushes pore water in creek bank sedi-
ments (Gardner, 2005; Harvey et al., 1995). Thus, physical characteristics, which drive differences in inun-
dation and pore water exchange, shape spatially heterogeneous pore water chemistry across salt marsh
locations.

Contrasting pore water characteristics interact with N and C cycling in salt marshes and can alter the
response of marsh biomass production and metabolism to N fertilization. H2S, the product of sulfate
reduction that accumulates to high concentrations in some marsh locations, inhibits coupled nitrifica-
tion‐denitrification (Burgin & Hamilton, 2007; Joye & Holibaugh, 1995), preventing heterotrophic deni-
trification from mineralizing OC to CO2, whereas it may stimulate chemolithotrophic dissimilatory
nitrate reduction to ammonium (DNRA) by acting as an electron donor (Burgin & Hamilton, 2007),
enhancing CO2 uptake. Because DNF is a heterotrophic process and DNRA is either chemolithotrophic
or fermentative (Washbourne et al., 2011), shifting the dominance of these processes likely influences
overall C cycling and responses to fertilization. H2S is known to act as a toxin to S. alterniflora at high
concentrations (Lamers et al., 2013), stunting biomass production and limiting GPP by inhibiting N
uptake (Bradley & Morris, 1990). Release of O2 by S. alterniflora roots acts as a defense against H2S
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toxicity by oxidizing H2S to sulfate (Lee et al., 1999) and enhancing
coupled nitrification‐denitrification (Hinshaw et al., 2017).

Marsh NEE can be measured using either chambers or eddy covariance
towers. For this study, we have chosen to use chambers since they easily
allow for experimental manipulations such as fertilization; however,
chamber measurements present a challenge due to the short time scale
for measurements and labor‐intensive protocols. Chamber studies typi-
cally ignore the effects of tidal inundation since they are most often per-
formed during marsh emergence from tidal water. Since tidal water may
act as a diffusion barrier to atmospheric CO2 and O2, affect S. alterniflora
metabolism through stomatal closure and inhibition of photosynthesis
(Pezeshki, 2001), and cause the CO2 produced by R to dissolve as DIC,
we have developed a model to extrapolate CO2 fluxes to an annual scale
that incorporates a correction for the effects of tidal inundation.

This study examined variations in responses of S. alterniflora biomass
and ecosystem metabolism to fertilization across three marsh locations
with contrasting physical characteristics. We scaled chamber measure-
ments to annual fluxes using an extrapolation model, compared results
to eddy covariance tower observations to assess differences between
methods, and quantified the importance of inundation correction on
our extrapolation model. We hypothesized that physical characteristics
of a salt marsh drive location‐specific pore water chemistry, modulating
responses of biomass and metabolic rates to fertilization. Fertilization
responses were expected to be greater in locations with higher elevation,
lower inundation periods, and close proximity to tidal creeks, whereas in
interior sites with low elevation and long inundation periods sulfide will
diminish responses to fertilization.

2. Materials and Methods
2.1. Site Description

Field experiments were conducted at two tidal creek systems onMarine Corps Base Camp Lejeune, NC, USA
(Figure 1, 34°35′52.8″N, 77°19′37.2″W) to represent marshes with contrasting physical characteristics
(Table 1; see Figure S1 in the supporting information for detailed plot pair locations). Plots were established
in both the interior marsh and along the creek edge at Freeman Creek (FC), a tidal creek bordering the
Atlantic IntracoastalWaterway. The FC creek edge had a bermwith an elevation 0.25mhigher than the aver-

age FC interior marsh elevation. A third site was selected in the interior of
a fringingmarsh near themouth of Traps Bay Creek (TBC), a tidal creek in
an embayment within the NewRiver Estuary. The FC sites were within an
extensive S. alterniflora –dominated marsh, while the TBC site was within
a S. alterniflora zone that transitioned into Juncus roemerianius (Davis et
al., 2017; McTigue et al., 2019). The tidal range averaged 0.31 m at TBC
and 0.83 m at FC (Lettrich, 2011; McTigue et al., 2019). Seasonal differ-
ences in water level were greater at TBC than FC, due to the influence of
freshwater inputs and wind‐driven tides (Ensign et al., 2017). As a conse-
quence, the TBC S. alternifloramarsh has a longer annual tidal inundation
period and occupies a narrower elevation range than FC. Using the Darcy
method, pore water residence times at FC and a tidal creek adjacent to
TBC were estimated to be 12 and 90 days, respectively (Lettrich, 2011).

2.2. Experimental Design

Three replicate control‐fertilized plot pairs were established in each of
the three selected sites, maintaining at least 1 m between plots. Two

Figure 1. Map of Camp Lejeune Marine Corp Base, NC, USA (34°35′52.8″
N, 77°19′37.2″W) with the experimental plot locations marked with
red stars.

Table 1
Physical Characteristics of the Three Experimental Marsh Sites

Characteristic Unit FC edge FC interior TBC interior

Tidal amplitudea m 0.83 0.83 0.31

Elevation (NAVD88)b m 0.21 −0.04 0.08

Annual % time
inundatedc

% 36 55 68

Typical salinity ranged 30–35 30–35 25–32

Pore water residence
timee

days Unknown 12 90

Tidal creek proximity m 0–5 >25 >5

aEnsign et al. (2017). bAverage plot elevation based on laser level mea-
surements. cBased on water level data from hobo dataloggers and the
NOAA Beaufort tidal gauge (which closely matched Hobo water level
data at FC). dYSI readings in the creeks near the sites over several tidal
cycles per season. eLettrich (2011).
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piezometers at 5 and 15 cm sediment depths and a 0.9 m × 0.9 m square aluminum collar with drainage
holes were permanently installed in each plot at the beginning of the experiment. A solid mixture of
NH4NO3 and P2O5 (30 mol N yr−1 and 15 mol P yr−1) was broadcast once per season in spring, summer,
fall, and winter, 2015, and spring and summer, 2016 on randomly chosen plots, which received one fourth
of the annual dose per season. This fertilization rate was selected because it has been used in several other
studies (Morris et al., 2002; Valiela, 2015), and is within natural levels of N enrichment on the U.S. East
Coast (Wigand et al., 2009). Plots were sampled seasonally from Fall 2015 to Summer 2016 about 1 month
after each fertilization.

2.3. Pore Water Chemistry

Pore water was collected seasonally from each 5 and 15 cm piezometer to measure H2S, NH4
+, DOC, and

DIC concentrations. Piezometers were flushed with N2 prior to sampling to remove reactive gases, and
pumped to flush out stagnant pore water. The H2S, NH4

+, and DOC samples were filtered in the field with
0.45 μm polyethylsulfone syringe filters, and DIC samples were collected without filtering in 8 ml hungate
tubes spiked with 8 μL of saturated HgCl2. H2S samples were filtered directly into 0.01 M zinc acetate solu-
tion and analyzed on a spectrophotometer using Cline's reagent (Cline, 1969) within 15 days of collection.
NH4

+ samples were stored frozen and analyzed on a Lachat Quickchem using phenol hypochlorite
(Solorzano, 1969). Because H2S in samples causes a false NH4

+ signal using the phenate method, H2S was
removed from samples by acidifying to a pH < 3 with sulfuric acid, sparging with argon gas for 8 min,
and reneutralizing using NaOH prior to analysis. DOC samples were filtered into combusted scintillation
vials (500°C for 5 hr), frozen for storage, and analyzed on a Shimadzu TOC‐V analyzer. DIC samples were
analyzed within 30 days of collection with a Li‐Cor 6252 infrared CO2 analyzer by injecting 100 μL of sample
into 0.05 M H2SO4 sparged with N2 gas as described in Neubauer and Anderson (2003).

2.4. Biomass

S. alterniflora AGB was estimated seasonally inside each plot collar by measuring the height of 10 randomly
selected stems to the tip of the longest leaf, and converting these heights to AGB per stem using the algo-
rithm in Davis et al., 2017. Stem density was determined within a 0.25 m quadrat in each plot and used to
scale to AGB per m2.

BGB was measured once at the end of the experiment (November 2016) by collecting one 20 cm deep, 6.4 cm
diameter sediment core from each plot, rinsing the sediment through a 1 mm pore size sieve, drying the
remaining biomass at 60°C for 2 weeks, and weighing the dried biomass.

2.5. Chamber Measurements of Metabolic Rates

Vertical CO2 fluxes in each plot were measured once per season with a Los Gatos Ultraportable Greenhouse
Gas Analyzer (Model 915‐0011) using static chambers equipped with an ice water cooling system tomaintain
chamber interiors within 2°C of ambient air temperature (Neubauer et al., 2000). A C1000 Campbell datalog-
ger was used to log air and sediment temperatures, measured with thermocouples, and photosynthetically
active radiation (PAR) determinedwith Li‐Cor 190RQuantum deck sensors inside and outside the chambers,
each at 15 s intervals. The static chambers were covered with shade cloths to measure CO2 fluxes at four dif-
ferent light conditions. The flux for each light condition was measured for approximately 5–8 min, and the
goodness of fit for each flux was >0.995 for CO2 concentration readings made every 45 s. The CO2 flux mea-
sured in the dark represented respiration (R), and the three other light levels (approximately 25%, 50%, and
100% ambient light) were used to construct photosynthesis‐irradiance (P‐I) curves for modeling GPP.

2.6. Scaling Observed Metabolic Rates to Daily and Annual Rates

Respiration Q10 was determined experimentally in triplicate 10 cm deep × 6.4 cm diameter sediment cores
taken at both FC and TBC interior sites in November 2016. After overnight equilibration to the chamber
temperature, cores were incubated for 12 hr at 15°C and 25°C in a dark environmental chamber at the
Virginia Institute of Marine Science. Headspace samples were taken three times during incubations for
determination of CO2 concentrations using a Li‐Cor 6,252 infrared gas analyzer to determine R. The formula
used to calculate the Q10 value for each core was
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Q10 ¼ R2=R1
10= T2 − T1ð Þð Þ

where R1 and R2 correspond to rates of R measured at tempera-
tures T1 (15°C) and T2 (25°C), respectively. Because no significant
differences between Q10 values were detected across sites, the
average of all six values was used to extrapolate R to hourly rates
based on sediment temperature.

The initial slope (α) and Pmax of P‐I curves were calculated using
the equation from Jassby and Platt (1976) in the phytotools package
(Silsbe & Malkin, 2015) for R software (R Core Team, 2014). An
exponential relationship between alpha and temperature was used
to adjust daily α throughout the year. Daily P‐I curves with tem-
perature‐adjusted alphas were then used to model hourly GPP
using average hourly PAR from the CRONOS Database weather
station at the Pamlico Aquaculture Field Laboratory in Aurora,
NC (https://climate.ncsu.edu/cronos/?station=AURO). Because
no clearcut relationship was observed between Pmax and sediment
temperature, Pmax remained fixed during each season.

2.7. Correcting Modeled Hourly R and GPP for
Tidal Inundation

Modeled hourly CO2 fluxes due to R and GPP were modified based
on tidal inundation depth. A previous study (Zawatski, 2018)
observed that CO2‐derived R and GPP rates both decreased linearly
with increasing tidal water depth, resulting in zero CO2 flux when
the water depth and the average plant height were equal. This rela-
tionship was applied to correct hourly R and GPP fluxes in each plot
based on the average plant height and hourly average water depth
in each plot. GPP, R, and NEE values were scaled up to daily and
annual rates by summing modeled hourly values. The average
hourly modeled chamber NEEs for FC interior control plots were
validated by comparison to NEEs observed concurrently using an
eddy covariance tower located in the interior of FC (tower data
from Fogarty, 2018). The FC interior plots were within the typical
tower flux footprint. Thirty days per season were compared sur-
rounding the date of chamber measurements.

2.8. Statistics

Mixed‐effect models with location, season, and treatment (fertilized
vs. control) as fixed factors and a repeated measure term were per-
formed using the lme4 package (Bates et al., 2015) in the statistical
software R (R Core Team, 2014) to determine significant differ-
ences (p < 0.05) between treatments and locations for seasonal
data. Treatment and location were used as fixed effects and plot
pair as a random effect to compare end‐of‐experiment BGB and
annual GPP, R, and NEE values. Analysis of variance (ANOVA)
assumptions of normality and equal variance were tested, and to
meet the normality assumption, the H2S data were square root
transformed and the NH4

+, DIC, DOC, and AGB data were log‐
transformed. Tukey posthoc tests were performed for pairwise
contrasts between factors.

Structural equation modeling (SEM) was used to determine direct
and indirect effects of pore water chemistry and fertilization on
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biomass and metabolic parameters. The piecewise SEM package (Lefcheck, 2016) was used in R software
to construct and analyze SEMs. Pore water concentrations from 5 and 15 cm depths were averaged for
SEM analysis.

3. Results
3.1. Pore Water Chemistry

Based on mixed‐effect model analysis, each measured pore water analyte differed significantly between
experimental locations (Tables 2 and 3). FC edge pore water had significantly lower concentrations of H2S
(p = 0.002 at 15 cm depth), NH4

+ (p < 0.01 at 5 and 15 cm depths), DOC (p = 0.001 at 5 cm depth;
p= 1× 10−4 at 15 cm depth), andDIC (no difference at 5 cm depth, p= 0.009 at 15 cm depth) than FC interior
and TBC.H2S, DOC, andDIC concentrations in fertilized plots were not significantly different than in control
plots; however, DOC at 5 cm was significantly greater in fertilized plots than control plots (p = 0.007).

3.2. Biomass

According to the mixed‐effect model results, FC edge had significantly greater AGB per m2 than FC interior
(p = 0.009) and TBC (p = 0.01) but AGB at TBC and FC interior were not different (Figure 2a). AGB was
significantly greater in fertilized plots than in control plots overall (p = 0.0001); however, an interaction
between the treatment and location factors (p = 0.028) indicated that there was no significant difference
between control and fertilized AGB at TBC. During summer 2016, AGB in fertilized FC edge plots peaked

Table 3
Results of Mixed‐Effect Models for All Variables in This Study, Including P Values and Degrees of Freedom (Df)

Location Treatment Season
Location:
treatment

Location:
season

Treatment:
season

Location:treatment:
season

Pore water sulfide 5 cm depth Df 2 1 4 2 7 4 7
P 5.69E−06 0.63022 6.68E−09 0.12136 5.46E−06 0.03414 0.05384

15 cm depth Df 2 1 4 2 7 4 7
P 7.35E−07 0.371 1.15E−07 0.635 4.65E−08 0.911 0.857

Pore water DOC 5 cm depth Df 2 1 3 2 6 3 6
P 1.55E−07 0.017 2.82E−08 0.969 6.91E−07 0.176 0.117

15 cm depth Df 2 1 3 2 6 3 6
P 1.57E−13 0.011 <2.2E−16 0.104 0.559 0.002 0.117

Pore water NH4
+ 5 cm depth Df 2 1 4 2 8 4 8

P <2.20E−16 0.100 0.023 0.908 0.001 0.098 0.646
15 cm depth Df 2 1 4 2 8 4 8

P <2.20E−16 0.041 0.098 0.032 0.235 0.003 0.212

Pore water DIC 5 cm depth Df 2 1 4 2 8 4 8
P 0.067 0.110 8.02E−14 0.005 1.56E−06 0.676 0.127

15 cm depth Df 2 1 4 2 8 4 8
P 1.08E−04 0.891 2.02E−11 0.164 2.52E−07 0.905 0.486

Biomass AGB Df 2 1 3 2 6 3 6
P 1.60E−06 <2.20E−16 0.126 0.028 2.23E−06 0.017 0.020

Stem Density Df 2 1 3 2 6 3 6
P 1.38E−06 5.33E−12 <2.20E−16 0.004 0.002 0.004 0.008

Stem Height Df 2 1 3 2 6 3 6
P <2.20E−16 <2.20E−16 0.006 0.167 3.02E−07 0.141 0.048

BGB Df 2 1 — 2 — — —

P 0.001 0.019 — 0.025 — — —

Annual metabolism Annual GPP Df 2 1 — 2 — — —

P 2.84E−05 <2.20E−16 — 0.004 — — —

Annual R Df 2 1 — 2 — — —

P <2.00E−16 <2.00E−16 — 0.020 — — —

Annual NEE Df 2 1 — 2 — — —

P 0.003132 4.42E−08 — 3.68E−05 — — —

Note. Bold values are statistically significant.
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dramatically to more than double the biomass of fertilized FC interior or TBC plots. Fertilized plots had
significantly greater stem density (p = 0.002) and stem height (p = 0.001) overall (Table S1); however, an
interaction between location and treatment for stem density (p = 0.004) (but not stem height) indicated
that there was no difference between control and fertilized stem density at TBC.

BGB (Figure 2b) in FC edge control plots had less than 20% the amount of BGBmeasured in the control plots
at the other two sites (p = 0.0001, Figure 2b), with a fivefold lower root: shoot ratio (Table S1) than interior
and TBC plots. While BGB in the FC fertilized and control plots was not different on the edge, BGB in the
fertilized FC interior and TBC plots was less than 50% of the BGB in respective control plots (p = 0.01).
The root:shoot decreased at each location in response to fertilization, as expected.

3.3. Daily NEE

Daily NEE and its response to fertilization differed depending on location (Figure S2). NEE was more
dynamic and seasonally variable at FC edge control than in other treatments, ranging from −400 to
+400 mmol CO2 m

−2 day−1. FC interior control plots were more balanced at zero net daily flux throughout
the year with less seasonal variation and range than the edge, and TBC was similarly balanced but shifted
further toward net CO2 uptake than FC interior in the spring. Fertilization on the FC edge caused daily
NEE to become even more dynamic, especially during Fall 2015 and Spring 2016, with a clear shift toward
greater daily net CO2 emission in the winter, spring, and summer. The fertilized FC edge displayed the great-
est daily net emission of the sites during summer 2016 with an emission of 400–800 mmol CO2 m

−2 day−1

and also the highest net daily uptake rates during fall 2015, as high as 800 mmol CO2 m
−2 day−1. The ferti-

lized FC interior also exhibited a shift toward net emission during fall and summer and a shift toward net

Figure 2. (a) Aboveground biomass (AGB) and (b) belowground biomass (BGB) across sites and treatments. BGB was
measured only during the Fall 2016 season.
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uptake during spring. The response to fertilization at TBC was more
diminished than at the other two sites, with no clear seasonality or shift
toward uptake or emission overall.

3.4. Annual Metabolism

Annual GPP (Figure 3a) in control plots on the FC edge averaged
127 mol CO2 m−2 yr−1, more than double the GPP in control plots of
the other two sites (p = 2.8 × 10−5), but FC interior and TBC control
sites did not differ. Based on the mixed‐effects model, GPP was signifi-
cantly greater in fertilized plots than control plots (p = 7.4 × 10−6);
however, an interaction between location and fertilization (p = 0.004)
indicated that while GPP was greater in FC edge control plots than
FC interior and TBC control plots, GPP in fertilized plots was not differ-
ent across the three locations.

R showed a similar pattern to GPP across the sites. Annual control plot R
averaged 120 mol m−2 yr−1 at FC edge, more than double the R in control
plots of the two interior sites (p < 1 × 10−5), but the two interior sites did
not differ. Based on the mixed‐effects model results, R was significantly
greater in fertilized plots than control plots overall (p = 2 × 10−16), but a
significant interaction between location and treatment (p = 0.019) indi-
cated that R rates in fertilized plots of the interior and TBCwere not differ-
ent than in control plots on the edge.

NEE (Figure 3b) was nearly balanced near net zero annual CO2 flux at all
three sites. Based on the mixed‐effects model, fertilized plots had higher
rates of net CO2 emission than control plots overall (p = 1.3 × 10−11);
however, a significant interaction between location and fertilization
(p = 3.7 × 10−5) indicated that fertilized plots along the edge had greater
annual net CO2 emissions than edge control plots, but there were no sig-

nificant differences in NEE between control and fertilized plots at FC interior and TBC. The fertilized edge
plots were estimated to emit an average of 62 mol CO2 m

−2 year−1.

3.5. Effect of Tidal Inundation on Vertical CO2 Flux

The hourly modeled chamber NEE fluxes were corrected for the effect of tidal inundation based on water
depth relative to the average plant height in each plot. Figure 4 displays the % reduction in annual GPP
and R resulting from the inundation correction of hourly rates. On the edge, which had the highest elevation

Figure 3. (a) Annual respiration (yellow), gross primary production
(green) and (b) net ecosystem exchange in fertilized and control plots at
the three experimental locations. Different letters on panel (a) indicate
statistically different fluxes, and the asterisk on panel (b) indicates a
statistically different flux. Positive values for R and NEE represent emission
while negative values for GPP represent uptake.

Figure 4. The % decrease in modeled R and GPP after correcting for inundation. Correction assumed a linear decrease in
the flux with tidal water depth and zero flux when depth was equal to the average stem height (as observed in
Zawatski, 2018).
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and lowest % annual inundation time, both GPP and R were reduced 9–13% by the inundation correction,
but because both GPP and R corrections were reduced by nearly the samemagnitude, the inundation correc-
tion had a negligible effect on NEE. In the FC and TBC interiors, R and GPP were reduced by 20–35%, and
because R was reduced more than GPP, the annual NEE value was offset in the direction of net uptake. The
greatest reduction in net CO2 emissions was 12 mol CO2 per year for the fertilized FC interior plots.

3.6. Chamber Versus Tower CO2 Measurements

Modeled hourly NEE for FC interior control plots corrected for tidal inundation were averaged and com-
pared to hourly eddy covariance tower flux observations (Fogarty, 2018) for 30 days during each season
(Figure S3). Average hourly NEE in FC interior control plots were similar in magnitude to the eddy covar-
iance tower observations, with a root‐mean‐square error (RMSE) of 6.6 mmol m−2 hr−1; however, in Fall
2015 the chamber model consistently estimated greater midday CO2 uptake than tower measurements,
while in Spring 2016 midday net CO2 uptake observed by the tower was at least double the NEE modeled
by chamber measurements for 8 of the 30 days. A linear regression comparing the methods (Figure S4) indi-
cates that, while positively correlated, modeled chamber NEE tended to be greater than tower NEE.

3.7. Structural Equation Model

A SEM with the structure presented in Figure 5 had an AIC score of 59
and overall p value of 0.516 (models above p = 0.05 were considered sig-
nificant). Fertilization and pore water H2S were the only two independent
variables in the model. H2S was positively correlated with pore water
NH4

+ but negatively correlated with GPP; however, pore water H2S was
not correlated with AGB and R. Fertilization was positively correlated
with pore water NH4

+, AGB, and GPP but was not directly correlated with
R. GPP and R were strongly positively correlated, and both GPP and R had
strong but opposing correlations with NEE. AGB was not directly corre-
lated with the rates of GPP or R.

The interaction of H2S concentrations with the response of NEE to fertili-
zation, which was implied by the results of the SEM, was visualized with a
linear regression of the square root of average H2S concentrations versus
the difference in NEE between each control and fertilized plot pair
(Figure 5). This resulted in a significant negative linear relationship
(p = 0.009) with an R2 value of 0.80, suggesting that accumulation of
H2S in pore water reduces the impacts of marsh fertilization on NEE
(Figure 6).

Figure 5. Structural equation model results. Gray arrows represent nonsignificant pathways, and black and red arrows
indicate significant positive and negative correlations, respectively. The correlation coefficient and thickness of each
arrow corresponds to the relative strength of the relationship. The value within each box represents total correlation
coefficient for that variable.

Figure 6. The relationship between annual average pore water H2S
concentration (square root transformed) and the response of annual NEE
to fertilization (p = 0.009). ΔNEE = (NEE in fertilized plot) − (NEE in
control plot) for each plot pair.
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4. Discussion
4.1. Pore Water Chemistry

The gradient of pore water H2S, NH4
+, DOC, and DIC concentrations observed across the three experimen-

tal locations in this study likely resulted from a combination of hydrological and biological (plant andmicro-
bial) drivers; however, the higher concentrations of GPP products (DOC) and respiration products (DIC,
H2S, and NH4

+) observed at sites with lower rates of GPP and R suggests that physical variables played a
more import role than biological process rates in regulating pore water characteristics. Longer pore water
residence and inundation times at TBC were the likely cause for the greater accumulation of pore water ana-
lytes at TBC. Because tidal water acts as a diffusion barrier blocking exposure of marsh sediments to oxygen,
marshes with longer duration and frequency of inundation tend to have sediments with more reduced con-
ditions and greater H2S concentrations (DeLaune et al., 1983; Wigand et al., 2016). The lower concentrations
of analytes on FC edge were expected due to more rapid pore water drainage and flushing of the pore space
with oxic creek water (Howes & Goehringer, 1994; King et al., 1982). At TBC, pore water H2S frequently
exceeded 2 mM, the threshold experimentally determined to completely inhibit N uptake by S. alterniflora
(Bradley & Morris, 1990); thus, the observed H2S concentrations were within a relevant range to impact S.
alterniflora metabolism.

The fate of N fertilizer differed among sites. At FC edge and interior, potential fates of NH4
+ included uptake

by S. alterniflora, microbial nitrification, or export due to flushing (Pastore et al., 2016), The high H2S at TBC
likely inhibited S. alterniflora N uptake and microbial nitrification (Joye & Hollibaugh, 1995); thus, the
NH4

+ added by fertilization accumulated in pore water to a much greater extent at TBC than at the other
sites with lower H2S.

4.2. Biomass

AGB was lower at the TBC site than at the FC sites, likely because aboveground growth was stunted by
H2S inhibition of N uptake. As expected in a marsh with N limitation of plant growth, fertilization
resulted in greater stem density, stem heights, and AGB at both FC edge and interior; however, at
TBC stem density and AGB were not affected by fertilization. The lack of a response at TBC despite
the presence of excess pore water N suggests that growth of S. alterniflora at TBC was not limited by
N availability but by the rate of N uptake. Currently, a small minority of other studies have similarly
observed a lack of response of AGB to fertilization (Davis et al., 2017; Johnson et al., 2016). As observed
in this and other studies, sediment deposition increases with AGB (Morris et al., 2002); thus, pore water
chemistry, by modulating the response of AGB to fertilization, also potentially controls the response of
sediment accretion rates to fertilization.

BGB showed varying responses to fertilization across the three locations. BGB in FC edge did not respond to
fertilization, but at both interior sites BGB decreased with fertilization. Fertilizing interior marsh sites
caused S. alterniflora to shift the partitioning of fixed C from BGB to AGB, which may decrease net surface
elevation gain. A previous study conducted in the FC interior using (NH4)2SO4 as fertilizer (Davis et
al., 2017), rather than NH4NO3 as in this study, found that BGB did not respond to fertilization. Thus,
the type of fertilizer applied may lead to different responses of BGB in the same location.

4.3. Vertical Carbon Fluxes
4.3.1. Metabolic Rates
Rates of NEE varied daily between autotrophy and hetrotrophy, but patterns differed across seasons and
locations. FC edge with a greater magnitude of R and GPP demonstrated more dynamic variations in daily
NEE relative to those in interior sites. On an annual scale, NEE was similar across the three study loca-
tions, nearly balanced between net CO2 emission and uptake (Figure 2). Differences in the variation of
daily NEE across locations, especially in the spring and summer, did not lead to significant differences
in the response of the annual flux. However, the differences in daily NEE's response to fertilization across
locations resulted in significantly greater annual CO2 emissions on the fertilized edge than in the interior
marsh sites.

While both annual GPP and R varied across locations, within locations GPP and R in control plots were con-
sistently similar in magnitude, with a nearly balanced NEE, demonstrating that R is closely coupled to the
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products of GPP in these salt marshes. Coupling of GPP and R has been observed in other ecosystems such as
sea grass beds (Duarte et al., 2010) and forests (Fernandez‐Martinez et al., 2014), and may result from stimu-
lation of plant R by increased S. alterniflora biomass as well as increase of microbial R due to the release of
O2 and labile carbon from roots (Lee et al., 1999).

Although the C sequestration capabilities of salt marsh ecosystems result from high primary production
(Burden et al., 2013; Drake et al., 2015), causing them to be effective sinks for “blue” carbon (McLeod et
al., 2011), R and GPP were closely in balance in this study. Average salt marsh NEE on the Atlantic coast
has recently been reported to take up 19 ± 7 mol C m−2 year−1 (Windham‐Myers et al., 2018); sites that were
net heterotrophic were considered outliers and not included in this average. However, a growing number of
studies have shown marshes to be net sources of CO2 (Krauss et al., 2016; Wang et al., 2017; Wilson et
al., 2015), raising questions regarding the origin of the OC respired. In salt marshes, OC is produced by auto-
chthonous primary production but may also be delivered via sediment deposition during tidal flooding.
Allochthonous sediment OC may fuel microbial respiration, resulting in balanced NEE even when there
is also sequestration of OC in buried plant biomass. Marshes with balanced NEE may continue to sequester
C and maintain elevation above sea level via accretion of sediment from tidal waters (Kirwan &
Murray, 2007). The elevation of Freeman interior has been observed to increase 0.2 to 1.2 cm year−1

(Davis et al., 2017), suggesting that sediment deposition drives accretion rates at Freeman Creek marsh.
Ensign and Currin (2017) determined that suspended sediment concentrations in the FC marsh during tidal
flooding were consistent from the creekbank to the interior marsh and that resuspension of the sediment
surface microlayer delivered substantial amounts of sediment to the interior marsh.

Fertilization caused both annual GPP and R to increase at each site, but net CO2 emissions increased only
along FC edge. This loss of 62 mol C m−2 year−1 along the fertilized edge is significant and could result in
a decrease in overall accretion rates and elevation. Other salt marsh studies have similarly concluded that
fertilization increases both GPP and R (Anisfeld & Hill, 2012; Caplan et al., 2015; Geoghegan et al., 2018;
Martin et al., 2018; Morris & Bradley, 1999; Wang, Zhu et al., 2013); however, studies are less congruent
about the effect of fertilization on NEE, showing variation between no detectable effect (Geoghegan et
al., 2018) and increasing CO2 emissions (Caplan et al., 2015; Wang, Zhu et al., 2013). A decrease in soil car-
bon content has been observed with fertilization (Morris & Bradley, 1999) but may be a result of increased
sediment input changing sediment composition rather than loss of carbon in sediment (Morris et
al., 2002). Whereas results of this study suggest that sulfide is a primary driver responsible for differences
across sites, other site‐specific variations including hydraulic conductivity, pore water residence time, and
composition of the fertilizer may explain inconsistencies observed in other studies.
4.3.2. Effects of Inundation
Great interest has recently been directed toward understanding the effect of tidal inundation on vertical
carbon fluxes. Kathilankal et al., 2008 observed a reduction of midday NEE by a wide range (3–91%) dur-
ing inundation. Moffett et al. (2010) observed a depth‐dependent suppression of CO2 fluxes similar to the
relationship found by Zawatski (2018), which was used to correct the fluxes in this study. A study con-
ducted in a high marsh in Massachusetts (Forbrich & Giblin, 2015) showed that inundation reduced
annual NEE by about 2–4% but hypothesized that the effect of inundation would be greater in lower ele-
vation marshes. In this present study, R and GPP were reduced by up to 13% on the less frequently inun-
dated edge and reduced by 20–35% in the more frequently inundated FC interior and TBC marshes. While
the inundation correction did not alter the annual NEE calculation at FC edge, inundation did have a sig-
nificant effect on NEE calculations in the interior marshes (Table S2). Therefore, it is critical to correct
NEE for the effect of inundation in low‐elevation marshes when extrapolating chamber measurements
to longer timescales.
4.3.3. Comparison of NEE Measured by Chambers and Eddy Covariance
Numerous studies have scaled chamber flux measurements to seasonal or annual fluxes (Anisfeld &
Hill, 2012; Neubauer, 2013; Weston et al., 2014); however, the availability of an additional source of data
to validate chamber extrapolation models is rare. An eddy covariance tower located at FC interior pro-
vided the opportunity to validate the chamber extrapolation model for hourly NEE in FC interior control
plots. To our knowledge, only one other study (Krauss et al., 2016) has compared chamber measurement
extrapolations with eddy covariance tower observations in salt marsh ecosystems. Whereas eddy covar-
iance towers have the benefit of being a high‐frequency data source, calculating tower fluxes relies on
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a host of assumptions (Baldocchi et al., 1988) not applicable to chamber measurements. Chambers may be
more useful for measuring small‐scale spatial heterogeneity and to tease apart mechanisms driving spatial
heterogeneity of gas fluxes using experimental manipulations. Greater knowledge of these mechanisms
may be used to improve scaling flux estimates to whole marsh systems. While comparing the two meth-
ods may improve confidence in scaling chamber measurements, one should not expect individual plot
metabolism to precisely match tower observations because the eddy covariance tower measurements
reflect a larger spatial scale. Spatial heterogeneity at a smaller scale may cause individual plots to deviate
from the average marsh tower footprint flux. Furthermore, the boundaries of the footprint integrated by
the tower shift over time as wind speed and direction change (Baldocchi, 1997) and may capture the ver-
tical CO2 flux of areas not included in chamber plots, including parts of the adjacent high marsh and tidal
creek.

Despite these differences between chamber and tower measurements, the average of the three FC interior
control plots reflected the tower data reasonably well, indicating that the plots were representative of the
whole interior marsh, and that the chamber extrapolation model was suitable for calculating daily and
annual CO2 flux values over the experimental period. Wind speed was negatively correlated with tower
CO2 flux error (Hollinger & Richardson, 2005) and, thus, nighttime, with lower wind speeds (Peltola et
al., 2015), may produce greater tower error, partially explaining the slight decoupling of tower and chamber
measurements at night and on days with lower wind speeds. However, nighttime decoupling could also be
the result of extrapolating R measured during the day to nighttime in the chambers, assuming no diel varia-
bility in S. alterniflora respiration. Other studies similarly have observed minor differences in magnitude of
chamber and tower flux measurements with a slight bias toward greater CO2 fluxes from chambers than
towers (Krauss et al., 2016; Poyda et al., 2017; Wang, Liu, et al., 2013) (Figure S4).
4.4. Drivers of Observed Spatial Patterns
SEM analysis proved to be useful for teasing apart direct and indirect effects of measured variables on NEE.
Pore water H2S and fertilization both positively influenced pore water NH4

+ concentrations. Although H2S
had a direct negative effect on GPP, NH4

+ had no effect even though they covary in concentration. These
modeled results support the hypothesis that H2S drives spatial variation in GPP and plant biomass by limit-
ing N uptake and causing NH4

+ to accumulate in pore water. Fertilization had a direct positive influence on
both AGB and GPP; however, surprisingly, its influence on R was indrect. SEM results suggest that R is con-
trolled primarily by variations in GPP rather than by direct inhibition by H2S or direct stimulation by ferti-
lization. Therefore, while fertilization has been shown to increase the rate of denitrification (Koop‐Jakobsen
& Giblin, 2010), a heterotrophic respiratory process, the stimulation of R by fertilization is primarily through
the stimulation of plant GPP.
4.5. Implications
About 80% of the variation in the response of NEE to fertilization was explained by pore water H2S concen-
trations, indicating that pore water H2S concentrations may be a useful predictor of the relative impact of
nitrogen enrichment on NEE. Highly sulfidic marshes, which tend to be those with low elevation, long inun-
dation and residence times, and limited pore water exchange, may be more resilient to the negative impacts
of increasing N availability, but they may also not benefit from the positive impacts of fertilization resulting
from increased AGB and sediment deposition. Fertilized marshes with low H2S may lose C through meta-
bolic processes, but this loss may be balanced by increased deposition of sediment OC (Graham &
Mendelsshon, 2014).

5. Conclusions

• Correcting the chamber CO2 flux extrapolationmodel for the effects of tidal inundation on CO2 fluxes was
critical to avoid overestimation of annual R, GPP, and net CO2 emission.

• The magnitude of corrected hourly NEE from chamber measurements was comparable to eddy covar-
iance tower observations at the same site.

• Site‐specific pore water H2S, NH4
+, DIC, and DOC concentrations were influenced by inundation time,

creek proximity, and pore water residence time
• Control plots with high pore water H2S exhibited decreased AGB, R, and GPP; however, NEE was similar

and nearly balanced across all sites.
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• The response of fertilization is related to location‐specific pore water H2S concentrations governed by
physical characteristics.
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